Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Rev Argent Microbiol ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38403533

RESUMEN

Infectious bovine keratoconjunctivitis (IBK) is an ocular disease that affects bovines and has significant economic and health effects worldwide. Gram negative bacteria Moraxella bovis and Moraxella bovoculi are its main etiological agents. Antimicrobial therapy against IBK is often difficult in beef and dairy herds and, although vaccines are commercially available, their efficacy is variable and dependent on local strains. The aim of this study was to analyze for the first time the genomes of Uruguayan clinical isolates of M. bovis and M. bovoculi. The genomes were de novo assembled and annotated; the genetic basis of fimbrial synthesis was analyzed and virulence factors were identified. A 94% coverage in the reference genomes of both species, and more than 80% similarity to the reference genomes were observed. The mechanism of fimbrial phase variation in M. bovis was detected, and the tfpQ orientation of these genes confirmed, in an inversion region of approximately 2.18kb. No phase variation was determined in the fimbrial gene of M. bovoculi. When virulence factors were compared between strains, it was observed that fimbrial genes have 36.2% sequence similarity. In contrast, the TonB-dependent lactoferrin/transferrin receptor exhibited the highest percentage of amino acid similarity (97.7%) between strains, followed by cytotoxins MbxA/MbvA and the ferric uptake regulator. The role of these virulence factors in the pathogenesis of IBK and their potential as vaccine components should be explored.

2.
Rev. argent. microbiol ; 55(3): 5-5, Oct. 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1529620

RESUMEN

Abstract Proteus mirabilis (P. mirabilis) is a common etiological agent of urinary tract infec-tions, particularly those associated with catheterization. P. mirabilis efficiently forms biofilms on different surfaces and shows a multicellular behavior called 'swarming', mediated by flagella. To date, the role of flagella in P. mirabilis biofilm formation has been under debate. In this study, we assessed the role of P. mirabilis flagella in biofilm formation using an isogenic allelic replacement mutant unable to express flagellin. Different approaches were used, such as the evaluation of cell surface hydrophobicity, bacterial motility and migration across catheter sections, measurements of biofilm biomass and biofilm dynamics by immunofluorescence and confocal microscopy in static and flow models. Our findings indicate that P. mirabilis flagella play a role in biofilm formation, although their lack does not completely avoid biofilm genera-tion. Our data suggest that impairment of flagellar function can contribute to biofilm prevention in the context of strategies focused on particular bacterial targets.


Resumen Proteus mirabilis (P mirabilis) es un agente etiológico común de infecciones del tracto urinario, en particular de aquellas asociadas con cateterización. P. mirabilis forma biofilms eficientemente en diferentes superficies y muestra un comportamiento multicelular llamado swarming, mediado por flagelos. Hasta el momento, el papel de los flagelos en la formación de biofilms de P. mirabilis ha estado en discusión. En este estudio, se evaluó el papel de los flagelos de P. mirabilis en la formación de biofilms, utilizando una mutante isogénica generada por reemplazo alélico, incapaz de expresar flagelina. Se utilizaron diferentes enfoques, como la evaluación de la hidrofobicidad de la superficie celular, de la movilidad y la migración bacteriana sobre secciones de catéteres y medidas de biomasa y de la dinámica del biofilm mediante inmunofluorescencia y microscopia confocal, tanto en modelos estáticos como de flujo. Nuestros hallazgos indican que los flagelos de P. mirabilis desempeñan un papel en la formación de biofilms, aunque su falta no suprime por completo su generación. Asimismo, evidencian que la interferencia de la función flagelar puede contribuir a evitar la formación de biofilms en el contexto de estrategias centradas en blancos bacterianos particulares.

3.
Microorganisms ; 11(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37512877

RESUMEN

In Uruguay, the mortality of dairy calves due to infectious diseases is high. Escherichia coli is a natural inhabitant of the intestinal microbiota, but can cause several infections. The aim of the work was to characterize E. coli isolates from intestinal and extraintestinal origin of dead newborn calves. Using PCR, virulence gene characteristics of pathogenic E. coli were searched. The pathogenic E. coli were molecularly characterized and the phylogroup, serogroup and the Stx subtype were determined. Antibiotic susceptibility was determined using the Kirby-Bauer disk diffusion method and plasmid-mediated quinolone resistance (PMQR) genes with PCR. Finally, clonal relationships were inferred using PFGE. Gene characteristics of the Shiga toxin-producing E. coli (STEC), Enteropathogenic E. coli (EPEC) and Necrotoxigenic E. coli (NTEC) were identified. The prevalence of the iucD, afa8E, f17, papC, stx1, eae and ehxA genes was high and no f5, f41, saa, sfaDE, cdtIV, lt, sta or stx2 were detected. The prevalence of STEC gene stx1 in the dead calves stood out and was higher compared with previous studies conducted in live calves, and STEC LEE+ (Enterohemorrhagic E. coli (EHEC)) isolates with stx1/eae/ehxA genotypes were more frequently identified in the intestinal than in the extraintestinal environment. E. coli isolates were assigned to phylogroups A, B1, D and E, and some belonged to the O111 serogroup. stx1a and stx1c subtypes were determined in STEC. A high prevalence of multi-resistance among STEC and qnrB genes was determined. The PFGE showed a high diversity of pathogenic strains with similar genetic profiles. It can be speculated that EHEC (stx1/eae/ehxA) could play an important role in mortality. The afa8E, f17G1 and papC genes could also have a role in calf mortality. Multidrug resistance defies disease treatment and increases the risk of death, while the potential transmissibility of genes to other species constitutes a threat to public health.

4.
Rev Argent Microbiol ; 55(3): 226-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37076397

RESUMEN

Proteus mirabilis(P. mirabilis) is a common etiological agent of urinary tract infections, particularly those associated with catheterization. P. mirabilis efficiently forms biofilms on different surfaces and shows a multicellular behavior called 'swarming', mediated by flagella. To date, the role of flagella in P. mirabilis biofilm formation has been under debate. In this study, we assessed the role of P. mirabilis flagella in biofilm formation using an isogenic allelic replacement mutant unable to express flagellin. Different approaches were used, such as the evaluation of cell surface hydrophobicity, bacterial motility and migration across catheter sections, measurements of biofilm biomass and biofilm dynamics by immunofluorescence and confocal microscopy in static and flow models. Our findings indicate that P. mirabilis flagella play a role in biofilm formation, although their lack does not completely avoid biofilm generation. Our data suggest that impairment of flagellar function can contribute to biofilm prevention in the context of strategies focused on particular bacterial targets.


Asunto(s)
Proteus mirabilis , Infecciones Urinarias , Humanos , Biopelículas , Infecciones Urinarias/microbiología , Flagelos
5.
Sci Total Environ ; 868: 161331, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36623662

RESUMEN

Insect pollinators are threatened worldwide, being the exposure to multiple pesticides one of the most important stressor. The herbicide Glyphosate and the insecticide Imidacloprid are among the most used pesticides worldwide, although different studies evidenced their detrimental effects on non-target organisms. The emergence of glyphosate-resistant weeds and the recent ban of imidacloprid in Europe due to safety concerns, has prompted their replacement by new molecules, such as glufosinate-ammonium (GA) and sulfoxaflor (S). GA is a broad-spectrum and non-selective herbicide that inhibits a key enzyme in the metabolism of nitrogen, causing accumulation of lethal levels of ammonia; while sulfoxaflor is an agonist at insect nicotinic acetylcholine receptors (nAChRs) and generates excitatory responses including tremors, paralysis and mortality. Although those molecules are being increasingly used for crop protection, little is known about their effects on non-target organisms. In this study we assessed the impact of chronic and acute exposure to sublethal doses of GA and S on honey bee gut microbiota, immunity and survival. We found GA significantly reduced the number of gut bacteria, and decreased the expression of glucose oxidase, a marker of social immunity. On the other hand, S significantly increased the number of gut bacteria altering the microbiota composition, decreased the expression of lysozyme and increased the expression of hymenoptaecin. These alterations in gut microbiota and immunocompetence may lead to an increased susceptibility to pathogens. Finally, both pesticides shortened honey bee survival and increased the risk of death. Those results evidence the negative impact of GA and S on honey bees, even at single exposition to a low dose, and provide useful information to the understanding of pollinators decline.


Asunto(s)
Herbicidas , Insecticidas , Plaguicidas , Abejas , Animales , Neonicotinoides , Bacterias
6.
Microb Ecol ; 85(4): 1485-1497, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35460373

RESUMEN

Large-scale honey bee colony losses reported around the world have been associated with intoxication with pesticides, as with the presence of pests and pathogens. Among pesticides, neonicotinoid insecticides are the biggest threat. Due to their extensive use, they can be found in all agricultural environments, including soil, water, and air, are persistent in the environment, and are highly toxic for honey bees. In addition, infection by different pests and pathogens can act synergistically, weakening bees. In this study, we investigated the effects of chronic exposure to sublethal doses of imidacloprid alone or combined with the microsporidia Nosema ceranae on the immune response, deformed wing virus infection (DWV), gut microbiota, and survival of Africanized honey bees. We found that imidacloprid affected the expression of some genes associated with immunity generating an altered physiological state, although it did not favor DWV or N. ceranae infection. The pesticide alone did not affect honey bee gut microbiota, as previously suggested, but when administered to N. ceranae infected bees, it generated significant changes. Finally, both stress factors caused high mortality rates. Those results illustrate the negative impact of imidacloprid alone or combined with N. ceranae on Africanized honey bees and are useful to understand colony losses in Latin America.


Asunto(s)
Microbioma Gastrointestinal , Nosema , Plaguicidas , Abejas , Animales , Neonicotinoides/toxicidad , Plaguicidas/farmacología , Nosema/fisiología
7.
J Appl Microbiol ; 133(3): 1610-1619, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35699653

RESUMEN

AIMS: In this study, we sought to identify and characterize a collection of 101 lactobacilli strains isolated from natural whey starters used in Uruguayan artisan cheese production, based on their capacity to produce gamma-aminobutyric acid (GABA) and their probiotic potential. METHODS AND RESULTS: The probiotic potential was assessed using low pH and bile salt resistance assays; bacterial adhesion to intestinal mucus was also evaluated. Selected strains were then identified by 16S sequencing, and their GABA-producing potential was confirmed and quantified using a UHPLC-MS system. Twenty-five strains were identified and characterized as GABA-producing lactobacilli belonging to the phylogenetical groups Lactiplantibacillus (n = 19) and Lacticaseibacillus (n = 6). Fifteen strains of the Lactiplantibacillus group showed a significantly higher GABA production than the rest. They showed the predicted ability to survive the passage through the gastrointestinal tract, according to the in vitro assays. CONCLUSIONS: A set of promising candidate strains was identified as potential probiotics with action on the gut-brain axis. Further studies are needed to assess their possible effects on behaviour using in vivo assay. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the potential of strains isolated from local natural whey starters as probiotics and for biotechnological use in functional GABA-enriched foods formulation.


Asunto(s)
Queso , Probióticos , Adhesión Bacteriana , Queso/microbiología , Lactobacillus/genética , Ácido gamma-Aminobutírico
8.
J Infect Dev Ctries ; 16(4): 630-637, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35544624

RESUMEN

INTRODUCTION: Bovine mastitis is the most common disease affecting the dairy industry, with staphylococci being considered as one of the most significant and prevalent causes. This study aimed to assess the presence of staphylococcal subclinical mastitis (SCM) in Uruguayan dairy farms and to identify Staphylococcus aureus (SA) and non-aureus staphylococci (NAS) in milking cows. In addition, the antibiotic susceptibility of isolated staphylococci was evaluated. METHODOLOGY: We tested 546 apparently healthy milking cows from 11 farms for detecting SCM using the California Mastitis Test (CMT). The cows were not treated with antibiotics. CMT-positive samples were cultured, and colonies compatible with Staphylococcus spp. were further identified through molecular techniques. The susceptibility of the Staphylococcus spp. isolates against thirteen antibiotics was determined using the disk diffusion method. RESULTS: Subclinical staphylococcal mastitis was present in almost all (82%) farms. SA (n = 39) was more common than NAS (n = 9) in the 48 samples tested. Isolates exhibited resistance to one, two, and even three different antibiotics. Resistance to penicillin was the most frequent among SA (23/39) and NAS (4/9). No staphylococci isolates exhibited resistance to cefoxitin, vancomycin, trimethoprim-sulfamethoxazole, erythromycin, or clindamycin. CONCLUSIONS: Staphylococcal SCM is one of the most common diseases in Uruguayan dairy farms. SA was the prevalent pathogen, however SA and NAS mastitis coexisted in many farms. NAS were identified and its distribution was similar to other countries. Penicillin had the highest and most frequent percentage of resistance.


Asunto(s)
Mastitis Bovina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Bovinos , Granjas , Femenino , Humanos , Mastitis Bovina/epidemiología , Leche , Penicilinas , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Staphylococcus , Staphylococcus aureus
9.
Probiotics Antimicrob Proteins ; 14(5): 804-815, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390476

RESUMEN

Early microbial colonization is a determinant factor in animal health, and probiotic administration has been demonstrated to modulate intestinal microbiota and promote health in dairy calves. The objective of this study was to evaluate changes in calves' fecal microbiota after the administration of two probiotic lactobacilli strains that had previously exhibited beneficial effects in calves' health in relation to neonatal calf diarrhea. An in vivo assay was performed with 30 newborn male Holstein calves that were divided into three groups. Two groups were orally administered with two different lactobacilli strains (Lactobacillus johnsonii TP1.6 or Limosilactobacillus reuteri TP1.3B), and the third was the control group. Calves (5 to 9 days old) were administered with freeze-dried bacteria once a day for 10 consecutive days. Feces samples were taken before the first administration (day 0) and then again on days 10 and 21, and the V4 region of the bacterial 16S ribosomal gene was sequenced with an Illumina MiSeq 250 paired-end platform. The administration of both strains significantly affected the total bacterial community composition, and the effect lasted for 11 days after the last dose. In particular, amplicon sequence variants related to Bifidobacterium and Akkermansia genera were significantly higher in both treated groups. Therefore, modulation of the intestinal microbiota is a potential mechanism of action behind the beneficial effects of these probiotic strains.


Asunto(s)
Microbiota , Probióticos , Animales , Bacterias , Bovinos , Heces/microbiología , Promoción de la Salud , Lactobacillus , Masculino
10.
Microb Ecol ; 83(2): 492-500, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33973059

RESUMEN

Honey bees (Apis mellifera) provide invaluable benefits for food production and maintenance of biodiversity of natural environments through pollination. They are widely spread across the world, being adapted to different climatic conditions. To survive the winter in cold temperate regions, honey bees developed different strategies including storage of honey and pollen, confinement of individuals during the winter, and an annual cycle of colony growth and reproduction. Under these conditions, winter honey bees experience physiological changes, including changes in immunity and the composition of honey bee gut microbiota. However, under tropical or subtropical climates, the life cycle can experience alterations, i.e., queens lay eggs during almost all the year and new honey bees emerge constantly. In the present study, we characterized nurses' honey bee gut microbiota in colonies under subtropical region through a year, combining qPCR, PCR-DGGE, and 16S rDNA high-throughput sequencing. We also identified environmental variables involved in those changes. Our results showed that under the mentioned conditions, the number of bacteria is stable throughout the year. Diversity of gut microbiota is higher in spring and lower in summer and winter. Gradual changes in compositions occur between seasons: Lactobacillus spp. predominate in spring while Gilliamella apicola and Snodgrasella alvi predominate in summer and winter. Environmental variables (mainly precipitations) affected the composition of the honey bee gut microbiota. Our findings provide new insights into the dynamics of honey bee gut microbiota and may be useful to understand the adaptation of bees to different environmental conditions.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacterias/genética , Abejas , Biodiversidad , Microbioma Gastrointestinal/genética , Polinización , Estaciones del Año
11.
J Microbiol Biol Educ ; 22(3)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34804322

RESUMEN

We present a resource for instructors that contains results and data sets from the Ames test. Our aim is to share the results we have collected in previous semesters with other instructors, so they will be able to "conduct" the Ames test without the need to set foot in a laboratory classroom. Instructors will be able to use our online resource to perform the test remotely, as a supplement to their laboratory classroom, or even under hybrid circumstances. The coronavirus disease 2019 (COVID-19) pandemic brought many changes, including the way we, as instructors, were able to carry out our educational curricula, since access to laboratory classrooms was not always possible. While COVID-19 restrictions are still in place, and thus access to laboratory classrooms is limited or null, instructors can use our online resource, without the need to set foot in a laboratory classroom. When COVID-19 restrictions are lifted and access to laboratory classrooms is permitted, instructors can follow the procedures we describe and compare their results with ours, which appear in Results and Discussion, or use our data sets as take-home assignments for their students. In addition to its use in detecting the potential mutagenicity of different samples, we have found the Ames test to be extremely useful for developing problem-solving skills by means of exercises like the ones included in this resource. Furthermore, the potential of this test as a starting point for problem-based learning is remarkable. Some suggestions for its use in active learning settings are provided.

12.
Microorganisms ; 9(4)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920750

RESUMEN

Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.

14.
Rev Argent Microbiol ; 53(1): 34-38, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32553726

RESUMEN

Escherichia coli ETEC, EPEC, NTEC and STEC/EHEC pathotypes are often isolated from bovine feces. The objective of this study was to detect 21 E. coli virulence genes in feces from 252 dairy calves in Uruguay (149 with neonatal diarrhea - NCD - and 103 asymptomatic). Genes iucD, f17A, afa8E, papC, clpG and f17G(II) were the most prevalent (81.3%; 48.4%; 37.3%; 35.7%; 34.1%; 31.3%, respectively). Genes eae, stx1and stx2 were poorly represented; 13/252 animals harbored one or a combination of these genes. The prevalence of the cnf gene was 4.4%, while that of cdt-IV and cdt-III genes was 24.2% and 12.7% respectively. This study reports updated data about the virulence profiles of E. coli in dairy calves in Uruguay. A large number of adhesins and toxin genes were detected. Our results demonstrate that E. coli from bovine feces has diarrheagenic and extraintestinal profiles although other NCD risks factors may contribute to the disease outcome.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Bovinos , Enfermedades de los Bovinos/epidemiología , Diarrea/epidemiología , Diarrea/veterinaria , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Heces , Virulencia/genética , Factores de Virulencia/genética
15.
Front Vet Sci ; 7: 588919, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330715

RESUMEN

The aim of this work was to detect Escherichia coli isolates displaying resistance to oxyimino-cephalosporins, quinolones, and colistin in feces from livestock in Uruguay. During 2016-2019, fecal samples from 132 broiler and layer chicken flocks, 100 calves, and 50 pigs, were studied in Uruguay. Samples were cultured on MacConkey Agar plates supplemented with ciprofloxacin, ceftriaxone, or colistin. E. coli isolates were identified by mass spectrometry and antibiotic susceptibility testing was performed by disk diffusion agar method and colistin agar test. Antibiotic resistance genes were detected by polymerase chain reaction and sequencing. The most frequently detected resistance gene was qnrB19, recovered from 87 animals. Regarding plasmid-mediated quinolone resistance genes, qnrS1 was the second in prevalence (23 animals) followed by qnrE1, found in 6 chickens and two calves. Regarding resistance to oxyimino-cephalosporins, 8 different ß-lactamase genes were detected: bla CTX-M-8 and bla CMY-2 were found in 23 and 19 animals, respectively; next, bla CTX-M-2 and bla SHV-12 in 7 animals each, followed by bla CTX-M-14 in 5, bla CTX-M-15 and bla SHV2a in 2, and bla CTX-M-55 in a single animal. Finally, the mcr-1 gene was detected only in 8 pigs from a single farm, and in a chicken. Isolates carrying bla CMY-2 and bla SHV-12 were also found in these animals, including two isolates featuring the bla CMY-2/mcr-1 genotype. To the best of our knowledge, this is the first work in which the search for transferable resistance to highest priority critically important antibiotics for human health is carried out in chickens and pigs chains of production animals in Uruguay.

16.
Front Cell Infect Microbiol ; 10: 542755, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194792

RESUMEN

Urinary tract infections (UTI) are one of the most frequent bacterial infections in humans, being Uropathogenic Escherichia coli (UPEC), the most common etiological agent. The ability of UPEC to invade urothelial cells and to form intracellular bacterial communities (IBC) has been described. Therefore, UPEC can persist in the urinary tract producing recurrent infections, resisting antibiotic activity. The objective of the present work was to analyze the ability of a collection of UPEC clinical isolates to invade bladder epithelial cells in vitro and the activity of different classes of antibiotics on intracellular bacteria. We selected 23 UPEC clinical isolates that had been previously detected intracellularly in desquamated bladder epithelial cells from patients' urine. A cellular invasion assay using the T24 bladder cell line was used. Intracellular bacteria was confirmed by laser confocal microscopy. All the strains were able to invade the cells with different percentages of intracellular bacterial survival (0.7 to 18%). However, no significant relationship was found between the percentage of in vitro infection and the presence of IBC in desquamated urine cells. In vitro, intracellular bacteria were confirmed in four representative strains by confocal laser microscopy. Ceftriaxone, ciprofloxacin and, azithromycin in vitro activity on intracellular bacteria were evaluated. Amikacin was used as a negative control. All the antibiotics tested, except amikacin, significantly decreased the number of intracellular bacteria. Ciprofloxacin was the antibiotic that induced the highest decrease percentage. Conclusions: All UPEC clinical isolates could invade bladder epithelial cells in vitro. Ceftriaxone, ciprofloxacin, and azithromycin can reduce the percentage of intracellular bacteria in vitro. In vivo studies are needed to confirm the utility of these antibiotics for intracellular bacteria reduction in UTI.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Humanos
17.
Microb Drug Resist ; 26(6): 569-575, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31895639

RESUMEN

Acinetobacter baumannii is a relevant opportunistic pathogen, and one of the main microorganisms responsible for outbreaks in nosocomial infections worldwide. Its pathogenicity is mainly due to its resistance to multiple antibiotics and to its ability to form biofilms on abiotic surfaces. The objective of this study was to characterize the biofilm formation cycle of A. baumannii isolated from a patient in a hospital and compare its antibiotic resistance with the planktonic cells. To study biofilm formation, the classical microtiter assay was used, with crystal violet staining and optical density reading to classify the type of biofilm. Also, the effect of gentamicin and colistin on bacterial biofilm was studied with an extra step of antibiotic addition. For the characterization of the different biofilm formation stages, the strain was grown on a coverslip, and the stain was made with a mixture of fluorophores markers to visualize the biofilm with a confocal laser microscope. It was possible to differentiate the A. baumannii biofilm formation stages. Through these observations, it was possible to estimate the time elapsed between each stage. As the strain was susceptible to colistin and gentamicin, both antibiotics were evaluated after the biofilm was formed. Neither antibiotics showed an effect on the eradication of A. baumannii biofilm.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/crecimiento & desarrollo , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo
18.
Methods Mol Biol ; 2021: 35-44, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309494

RESUMEN

Flagella are effective organelles of locomotion and one of several virulence factors in Proteus mirabilis. To study their properties and role in virulence, we describe a protocol to extract and purify the native flagellin of P. mirabilis. Purified flagellin can be visualized by SDS-PAGE or immunoblot and is suitable for downstream applications such as immunization.


Asunto(s)
Flagelina/aislamiento & purificación , Proteus mirabilis/metabolismo , Centrifugación , Electroforesis en Gel de Poliacrilamida , Flagelos/metabolismo , Fenómenos Mecánicos , Proteus mirabilis/patogenicidad , Virulencia
19.
Methods Mol Biol ; 2021: 129-137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309502

RESUMEN

Bacterial adherence to eukaryotic cells is mediated by different adhesins that can act at different stages in bacteria-host interaction. Abundant evidence has suggested that adherence is critical for infection by bacterial pathogens. Proteus mirabilis is an opportunistic pathogen which frequently infects the human urinary tract, particularly in patients with indwelling urinary catheters. Sequencing of the genome of this pathogen has revealed the existence of a remarkable amount of complete fimbrial operons. In this chapter, we describe in vitro adherence assays of P. mirabilis to uroepithelial cells, which can provide relevant results to assess virulence of uropathogenic strains.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteus mirabilis/fisiología , Urotelio/microbiología , Animales , Adhesión Bacteriana , Línea Celular , Interacciones Microbiota-Huesped , Humanos , Proteus mirabilis/patogenicidad , Urotelio/citología , Virulencia
20.
Nanomedicine (Lond) ; 14(12): 1551-1564, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31166149

RESUMEN

Aim:Proteus mirabilis biofilms colonize medical devices, and their role in microbial pathogenesis is well established. Magnesium-doped zinc oxide nanoparticles (ZnO:MgO NPs) have potential antimicrobial properties; thus, we aimed at evaluating the antibiofilm activity of ZnO:MgO NPs against P. mirabilis biofilm. Materials & methods: After synthesis and characterization of ZnO:MgO NPs and their addition to a polymer film, we evaluated the stages of P. mirabilis biofilm development over glass coverslip covered by different concentrations of ZnO:MgO NPs. Results: Low concentrations of ZnO:MgO NPs affect the development of P. mirabilis biofilm. Descriptors showed reduced values in bacterial number, bacterial volume and extracellular material. Conclusion: Our results highlight this new application of ZnO:MgO NPs as a potential antibiofilm strategy in medical devices.


Asunto(s)
Biopelículas/efectos de los fármacos , Magnesio/química , Nanopartículas/química , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/crecimiento & desarrollo , Óxido de Zinc/química , Antibacterianos/química , Antibacterianos/farmacología , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Óxido de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...